山梨大学電子シラバス>検索結果一覧>授業データ |
授業科目名
|
担当教員
|
|||||||||||||
コンピュータ理工学特別講義II
|
藤代 一成
|
|||||||||||||
時間割番号
|
単位数
|
コース
|
履修年次
|
期別
|
曜日
|
時限
|
||||||||
GTK602 | 1 | Students before 2022 | 2 | 後期 | 月 | II | ||||||||
[概要と目標] | ||||||||||||||
With the advent of HPC, WSN, and GII, digital data to be simulated, measured, and retrieved has been getting larger and more complex. The main topic of this course is a method of computing, called data visualization, which allows ones to gain insight into the target subjects effectively through visual analysis of their feature structures and behaviors embedded in such datasets. After underlying principles are overviewed, we will introduce standard techniques to visualize scalar fields in 2D, 3D, 3D+time, and multi-dimensions. Up-to-date R&D results will be chosen to discuss the potentials of the methodology, including topological data visualization and dimensional reduction schemes. 本講義では,HPC, WSN, GII等の発展により格段に複雑さを増しつつあるディジタルデータに隠された対象の特徴的な構造や挙動を視覚的に分析することによって,そこから有用な知見を効果的に獲得するための計算論的方法論―データ可視化―について講究する.基本原理を概観した後,2次元,3次元,3次元+時間,多次元のスカラ場の標準的な可視化手法を紹介する.位相的データ可視化や次元縮約の当該技術の最新研究開発トピックも選択的に採り上げ,その可能性について議論を展開する. |
||||||||||||||
[到達目標] | ||||||||||||||
1. To understand dedicated paradigms and taxonomies; 2. To become familiar with fundamental principles and representative techniques; 3. To be able to visualize practical datasets using standard tools such as Paraview; and 4. To learn about recent R&D results in data visualization. 1. データ可視化のパラダイムや分類学を理解する 2. データ可視化の基本原理と代表的手法に習熟する 3. Paraviewのような標準ツールを用いて実際のデータが可視化できるようになる 4. データ可視化の最近の研究開発成果にふれる |
||||||||||||||
[必要知識・準備] | ||||||||||||||
Prerequisite includes basic knowledge about computer graphics, image processing, and numerical analysis. 履修にあたっては,コンピュータグラフィックス,画像処理,数値解析の基本的知識を前提とする. |
||||||||||||||
[評価基準] | ||||||||||||||
|
||||||||||||||
[教科書] | ||||||||||||||
(未登録) | ||||||||||||||
[参考書] | ||||||||||||||
|
||||||||||||||
[講義項目] | ||||||||||||||
This course will be conducted in person. The official language is English. 1: Orientation: Roles and values of data visualization 2: Visualization paradigms and taxonomies 3: 2D scalar field visualization 4: Marching Squares algorithm and its disambiguation 5: Fundamentals of volume visualization 6: Topologically accentuated volume rendering 7: Advanced volume visualization based on differential topology 8: Multi-dimensional scalar field visualization 本講義は対面形式で実施する予定である.公式言語は英語である. 1:オリエンテーション:データ可視化の役割と価値 2:可視化のパラダイムと分類学 3:2Dスカラ場の可視化 4:マーチングスクエア法とその曖昧さの解決 5:ボリューム可視化の基礎 6:位相強調型ボリュームレンダリング 7:微分位相幾何学に基づくボリューム可視化の高度化 8:多次元スカラ場の可視化 |