| 山梨大学電子シラバス>検索結果一覧>授業データ | 
| 
       授業科目名 
     | 
     
       担当教員 
     | 
  |||||||||||||
|  
       メカトロニクス工学特別講義II 
     | 
     
       外部講師 
     | 
  |||||||||||||
|  
       時間割番号 
     | 
     
       単位数 
     | 
     
       コース 
     | 
     
       履修年次 
     | 
     
       期別 
     | 
     
       曜日 
     | 
     
       時限 
     | 
  ||||||||
| GTJ602 | 1 | (未登録) | 1 | 集中 | (未登録) | (未登録) | ||||||||
| [概要と目標] | ||||||||||||||
|  メカトロニクス工学の関連分野において,最先端で活躍している大学・民間企業および公的機関の技術者ならびに研究者を講師に招き,最新の研究技術開発動向に関して学習する機会を設ける。本年度の概要は以下のとおりで,英語により開講する。 With the advent of HPC, WSN, and GII, digital data to be simulated, measured, and retrieved has been getting larger and more complex. The main target of this course is a computing methodology, called computer visualization, which provides insights gained through visual analysis of salient structures and behaviors embedded in such a data. After fundamental principles are surveyed, we place particular focus on representative techniques to visualize scalar fields in 2D, 3D, 3D+time, and multi-dimensions along the dedicated taxonomies. Up-to-date R&D topics are chosen to discuss the potentials of scalar data visualization, including advanced volume data mining based on differential topology and dimensional reduction schemes.  | 
  ||||||||||||||
| [到達目標] | ||||||||||||||
| 
      To be familiar with dedicated paradigm and taxonomies; To acquire proficiency in fundamental principles and representative techniques; To be able to visualize practical datasets with standard tools such as Paraview; and To acquire familiarity with recent R&D topics of computer visualization.  | 
  ||||||||||||||
| [必要知識・準備] | ||||||||||||||
| Prerequisite includes basic knowledge about database, computer graphics, image processing, and numerical analysis. | ||||||||||||||
| [評価基準] | ||||||||||||||
      
  | 
  ||||||||||||||
| [教科書] | ||||||||||||||
  | 
  ||||||||||||||
| [参考書] | ||||||||||||||
  | 
  ||||||||||||||
| [講義項目] | ||||||||||||||
| [Online classes using Zoom meeting] 1: Orientation 2: Introduction to scientific visualization 3: Visualization paradigm and taxonomy 4: Marching Squares algorithm and its disambiguation 5: Indirect/direct volume visualization 6: Topologically accentuated volume rendering 7: Advanced volume visualization based on differential topology 8: Multidimensional data visualization  | 
  ||||||||||||||