山梨大学電子シラバス>検索結果一覧>授業データ



授業科目名
担当教官
代数学特論
鳥養 映子/大木  真/鍋谷 暢一
時間割番号
単位数
コース
履修年次
期別
曜日
時限
322014 2 (未登録) 1 前期 I
[概要と目標]
 代数学に関係する数学の中から,学部より深い内容を体系的に取り上げる.具体的には,ベクトル空間,代数系,論理学について解説する.
 この講義の目標は,
 1. 抽象ベクトル空間の考え方を理解し,固有値・固有ベクトルや2次形式の計算ができる
 2. 抽象代数系の基礎的な概念を理解し,代数系の理工学への応用を学ぶ
 3. 記号論理学の基礎的な概念を理解し,記号を用いて推論を行うことができる
などである.
[必要知識・準備]
 集合,線形代数の基礎的な知識
[評価基準]
 いくつかの単元ごとの小試験やレポートにより,総合的に評価する.
[教科書]
(未登録)
[参考書]
  1. 前原昭二, 記号論理入門, 日本評論社, ISBN:4-535-60104-6
  2. 杉原厚吉・今井敏行, 工学のための応用代数, 共立出版, ISBN:4-320-01603-3
[講義項目]
 1. ベクトル空間
  1.1 ベクトル空間と線形写像
  1.2 内積と計量
  1.3 固有値と固有ベクトル
  1.4 2次形式
 2. 代数系
  2.1 半群と群
  2.2 群の表現
  2.3 環と体
  2.4 同型定理
 3. 論理
  3.1 記号論理とは
  3.2 命題論理
  3.3 述語論理