山梨大学電子シラバス>検索結果一覧>授業データ |
授業科目名 |
曲面の幾何学 (本年度非開講) |
||||||||||||||||||
時間割番号 | EEM311 | ||||||||||||||||||
担当教員名 | 武藤 秀夫 | ||||||||||||||||||
開講学期・曜日・時限 | 後期・月・IV | 単位数 | 2 | ||||||||||||||||
<対象学生> | |||||||||||||||||||
(未登録) | |||||||||||||||||||
<授業の目的および概要> | |||||||||||||||||||
本講では, 学生が曲線の曲がり具合をどのように考えるかを学び、その延長として曲面の曲がり具合について学ぶ。その際に,1変数,2変数関数の合成関数の微分や,線形代数の基本的な考え方が必要となるので,学生は,それらの復習も行うことになる。 | |||||||||||||||||||
<到達目標> | |||||||||||||||||||
・学生が,簡単な具体例を通じて,基本的な概念および考え方を理解する. ・学生が,微分積分学,線形代数学の考え方を復習し,それらを応用する場面を学ぶ。 |
|||||||||||||||||||
<授業の方法> | |||||||||||||||||||
・一般論を講義したあと具体例において定理等を適用、計算する. ・学生による,具体例の計算を取り入れる。 ・各章の始めに,その章で学ぶ内容理解のために,問題を配布する。 |
|||||||||||||||||||
<成績評価の方法> | |||||||||||||||||||
|
|||||||||||||||||||
<受講に際して・学生へのメッセージ> | |||||||||||||||||||
「微分積分学I, II」,「線形代数学I, II」の単位を取得していること. 2/3以上の出席が必要. |
|||||||||||||||||||
<テキスト> | |||||||||||||||||||
|
|||||||||||||||||||
<参考書> | |||||||||||||||||||
(未登録) | |||||||||||||||||||
<授業計画の概要> | |||||||||||||||||||
講義はつぎの予定で進めていくが, 受講者の理解度に応じて進めていくため, 以下の各取り扱いテーマは大雑把な目安であって(進度については)確定的なものではない. 第1講 :序論 第2講 :平面上の曲線と曲率 第3講 :Frenet-Serreの公式 第4講 :合同変換 第5講 :平面曲線の基本定理 第6講 :平面曲線の具体例と曲率の計算 第7講 :まとめ(中間) 第8講 :曲面の考え方と微分積分学、線形代数学 第9講 :第1基本形式 第10講:第2基本形式と曲面の曲がり具合 第11講:Gaussの式、Christofellの記号、Weingartenの式 第12講:主曲率とGauss曲率、平均曲率 第13講:Gauss写像とGauss曲率の幾何学的意味 第14講:曲面の具体例と曲率の計算 第15講:まとめ(期末) |