山梨大学電子シラバス>検索結果一覧>授業データ



授業科目名 基礎数学
時間割番号 LSC100 A
担当教員名 伊藤 一帆
開講学期・曜日・時限 前期・水・III 単位数 2
<対象学生>
(未登録)
<授業の目的および概要>
統計学、情報処理などに必要で今後の専門科目を学習する基礎となる数学、すなわち、多項式関数の微積分、行列、順列・組み合わせ、確率などについて学習する。
<到達目標>
高校までの数学のうち、今後不可欠となる項目について、完全に理解し、使えるようになる。
<授業の方法>
講義。
<成績評価の方法>
No評価項目割合評価の観点
1試験:期末期 40  %理解度を問う 
2試験:中間期 40  %理解度を問う 
3小テスト/レポート 10  %小テストで前回授業の理解度を問う 
4受講態度 10  %小テストの提出状況を点数化する 
<受講に際して・学生へのメッセージ>
基礎数学演習と同時に履修すること
<テキスト>
  1. 生協で販売の教科書プリント
<参考書>
(未登録)
<授業計画の概要>
第1回 数学の基本事項の再確認(絶対値、実数、複素数、方程式、集合、論理)<BR>第2回 具体的な関数とそのグラフ I(一次関数、二次関数)<BR>第3回 具体的な関数とそのグラフ II (n次関数、分数関数、無理関数)<BR>第4回 数列(数列の基本、数列の和とシグマ記号、数学的帰納法と漸化式、数列の極限)<BR>第5回 具体的な関数とそのグラフ III(指数関数、対数関数、三角関数)<BR>第6回 ベクトル(基本事項、成分表示、内積、位置ベクトル)<BR>第7回 行列(行列の演算、逆行列と連立一次方程式)<BR>第8回 中間試験<BR>第9回 図形と方程式(点、直線、2次曲線、点や曲線の位置関係、不等式の表す領域)<BR>第10回 微分法 I(関数の極限、導関数)<BR>第11回 微分法 II(接線、関数の増減と極値)<BR>第12回 積分法 I(不定積分)<BR>第13回 積分法 II(定積分と面積)<BR>第14回 確率 I(場合の数、事象と確率、条件つき確率)<BR>第15回 評価、総括、まとめ