山梨大学電子シラバス>検索結果一覧>授業データ



授業科目名
担当教員
微分積分学II
宿沢  修
時間割番号
単位数
コース
履修年次
期別
曜日
時限
257020 D 2 習熟度別 1 後期 木/水 V/III
[概要]
工学の基礎であり必要不可欠な知識として微分積分学を学習する。<BR>前期開講の微分積分学Iに引き続き、多変数関数(主として2変数関数)に対する<BR>微分・積分の理論と応用について学習し、工学における様々な分野で必要になる<BR>基礎的な力を付けることを目的とする。
[具体的な達成目標]
微分積分学に関する基本的な用語の意味を理解できる。<BR>微分・積分の具体的な計算ができる。<BR>微分積分学を利用した応用問題が解くことができる。<BR><BR>具体的には、次の事項ができるようにする。<BR>(1)2変数の極限の扱いを理解する。<BR>(2)具体的な関数の偏導関数を求める。<BR>(3)全微分と偏微分の違いを説明できる。<BR>(4)陰関数定理を理解し使うことができる。<BR>(5)2変数関数のテイラー展開を理解し計算できる。<BR>(6)極大値・極小値を求めることができる。<BR>(7)条件付き極値をLagrangeの未定乗数法を用いて求めることができる。<BR>(8)2重積分の意味を理解し、累次積分に帰着して計算できる。<BR>(9)変数変換を用いて2重積分が計算できる。
[必要知識・準備]
微分積分学Iの内容
[評価方法・評価基準]
No評価項目割合評価の観点
1試験:期末期 45  %要求される基本的な内容が理解できている。 
2試験:中間期 45  %要求される基本的な内容が理解できている。 
3受講態度 10  %学習意欲など総合的評価。 
[教科書]
  1. 山梨大学数学テキスト編集委員会, 山梨大学微分積分学テキスト, 生協,
    (必ず用意すること。)

  2. ドリルと演習シリーズ微分積分学, 電気書院, ISBN:9784485302026,
    (この程度の演習書を解くのが適当である。)
[参考書]
  1. 高木貞治, 解析概論, 岩波書店, ISBN:4000051717,
    (微分積分学の全ての源泉となった名著。より深く微分積分学を勉強したい人には必携の本。著者は20世紀を代表する数学者。)

  2. 池辺信範 他著, 微分積分学概説(改訂版), 培風館, ISBN:4563002119
  3. 石原 繁 浅野重初 共著, 理工系入門 微分積分学, 裳華房, ISBN:4785315180
  4. 坂田定久, 萬代武史 山原英男共著, 基礎コース微分積分学, 学術図書出版, ISBN:4873612721
  5. 星賀彰 他, 工学系の微分積分学, 学術図書, ISBN:9784780601145
[講義項目]
第1回 2変数の極限値の意味、極限の計算規則、関数の極限と連続<BR>第2回 連続関数、連続関数の極限の計算規則<BR>第3回 偏微分係数、偏微分法の公式、全微分<BR>第4回 高次導関数の定義と記号、2変数関数の合成の種類と合成関数の偏微分法<BR>第5回 陰関数定理<BR>第6回 2変数関数の平均値の定理、2変数関数のテイラーの定理とテイラー展開<BR>第7回 2変数関数の極大・極小およびそのグラフ、ラグランジェの乗数法<BR>第8回 中間評価(中間試験および解説)<BR>第9回 定積分の意味、2重積分の定義と記号、連続関数の2重積分<BR>第10回 積分の順序交換、1次変換による2重積分の計算法<BR>第11回 変数変換による2重積分の計算法、極座標による2重積分の計算法<BR>第12回 広義積分、ヤコビアン<BR>第13回 体積・曲面積の計算<BR>第14回 三重積分<BR>第15回 評価(総括とまとめ) 第9−15回 多変数関数の重積分(試験を途中で実施)<BR> 定積分の意味、2重積分の定義と記号、連続関数の2重積分、<BR>     計算例、2重積分の種々の計算法、積分の順序交換、<BR>   1次変換による2重積分の計算法、変数変換による2重積分の計算法、<BR> 極座標による2重積分の計算法、広義積分、ヤコビアン、<BR>  積分法の応用<BR> 体積・曲面積の計算<BR>     3重積分<BR>    まとめおよび総括
[教育方法]
習熟度別クラス編成を行い、習熟度に応じた講義がなされる。<BR>レポート、小テスト、宿題等を適宜課して理解を促進させる。
[JABEEプログラムの学習・教育目標との対応]
(未登録)
[その他]
過去問等については、<BR>http://fuji.cec.yamanashi.ac.jp/~sato/lecture/lecture.html<BR>を参照。<BR>数学に関してわからないことや質問は、<BR>フィロスや数学カフェにきて気軽に相談・質問して下さい。<BR>場所は工学部工業会館2Fと3Fです。