山梨大学電子シラバス>検索結果一覧>授業データ



授業科目名
担当教員
パターン認識
服部 元信
時間割番号
単位数
コース
履修年次
期別
曜日
時限
263641 2 G 3 後期 II
[概要]
人間をはじめとする諸動物は,外界から得た様々な情報を基にして,外界の様相を知覚,認識している.パターン認識とは,生物のもつこうした情報処理機能を機械化しようとする技術であり,人工知能の中でも極めて重要な一分野である.本講義では,パターン認識の基礎的な理論,手法を理解し,いくつかの代表的なパターン認識系をプログラミングによって構成できるようになることを目標とする.<BR>カリキュラム中での位置付け:<a href="http://www.cs.yamanashi.ac.jp/g/JABEE/curriculum/">Gコースのカリキュラム</a>
[具体的な達成目標]
(1)パターン認識における処理の流れを理解し,パターン認識系を構成する上で留意すべきことを説明できる.<BR>(2)ノンパラメトリック及びパラメトリックな学習による識別部設計の基礎的な手法を理解し,具体的な問題に対して識別部を設計できる.<BR>(3)特徴抽出部を設計するための特徴の評価方法を説明できる.<BR>(4)特徴空間を変換する基礎的な手法の理論を理解し,具体的な問題に対して適用できる.<BR>(5)具体的な問題に対して,適切なパターン認識系を構成できる.<BR>(6)パターン認識に関する基礎的な英語の文献を理解できる.
[必要知識・準備]
数学,プログラミングの知識が必要である.具体的には,線形代数学I,II,微分積分学I,II,基礎離散数学,基礎統計学I,II,プログラミングI,II,同演習を履修していることが望ましい.
[評価方法・評価基準]
No評価項目割合評価の観点
1試験:期末期 35  %目標(3),(4)に関して,各種の特徴の評価方法,ベイズ誤り確率,特徴量の正規化,KL展開,線形判別法などの理解度を評価する. 
2試験:中間期 35  %目標(1),(2)に関して,パターン認識における処理の流れとパターン認識系を構成する上で留意すべきことの理解度,基礎的な学習方法などの理解度を評価する. 
3小テスト/レポート課題 30  %目標(5),(6)に関して,基礎的なパターン認識手法をプログラミングによって構成できるかを評価する.また,英語文献の理解度を評価する. 
[教科書]
  1. 石井健一郎 他, わかりやすいパターン認識, オーム社, ISBN:427413149
[参考書]
  1. 舟久保登, パターン認識, 共立出版, ISBN:4320024362
  2. 飯島泰蔵, パターン認識理論, 森北出版, ISBN:4627805608
[講義項目]
1.パターン認識とは<BR>2.学習と識別関数(1)<BR> 線形識別関数,パーセプトロン<BR>3.学習と識別関数(2)<BR> 区分的線形識別関数<BR>4.誤差評価に基づく学習(1)<BR> Widrow-Hoffの学習則<BR>5.誤差評価に基づく学習(2)<BR> 誤差逆伝播法<BR>6.パラメトリック識別系<BR> パラメトリックな学習,パラメータの推定<BR>7.識別関数の設計<BR> 多クラスの識別,次元数とパターン数,識別部の最適化<BR>8.評価:前半の総括・まとめ<BR>9.特徴の評価<BR> ベイズ誤り確率,ベイズ誤り確率の推定法<BR>10.サポートベクターマシン<BR>11.特徴空間の変換(1)<BR> 特徴量の正規化<BR>12.特徴空間の変換(2)<BR> KL展開<BR>13.特徴空間の変換(3)<BR> 線形判別法<BR>14.特徴空間の変換(4)<BR> KL展開の適用例,英語文献理解度確認試験,演習問題<BR>15.評価:後半の総括・まとめ
[教育方法]
授業中に配布する穴埋め式の講義ノートを中心に講義を行う.必要に応じて,黒板等を使って補足の説明する.<BR>毎回,講義中に10〜15分程度の小テストを行う.<BR>パターン認識に関連した英語文献を与え,その理解度を確認するための試験を行う.<BR>基礎的なパターン認識手法を実際にプログラミングするレポートを2つ程度課す.<BR>小テストとその解答例,講義ノートは講義のページ掲載する.
[JABEEプログラムの学習・教育目標との対応]
《コンピュータ・メディア工学科 情報メディアコース》
(A) マルチメディア情報ネットワーク技術に習熟した情報処理技術者としての基盤となる基礎的素養及び基礎的スキルを修得する。
(C) 科学技術が社会や自然に及ぼす影響や効果までを考慮できる多面的な地球的視野を会得し、国際的なコミュニケーションを可能とする基礎能力を修得する。
(G-4)人間の知性・感性を知り応用するための知性・感性情報工学における基礎的技術
[その他]
特になし