山梨大学電子シラバス>検索結果一覧>授業データ



授業科目名
担当教員
環境数理
石井 信行
時間割番号
単位数
コース
履修年次
期別
曜日
時限
264370 2 CL 2 後期 IV
[概要]
土木環境に関連する現象を理解する上で,確率論的方法と決定論的方法からのアプローチが考えられる.前者は,確率・統計解析的手法が対応するが,後者についても最適化手法などの数理計画法がある.この講義では,土木環境の学生にとっての数理計画法に関する基礎的素養を養うために,線形計画法を取上げ,この数学的性質の理解とともに,いくつかの解法を理解し,実践的に解法を修得することを目指す.
[具体的な達成目標]
数理計画法の一つである線形計画法の理解とこれに関する4つの解法を理解し,これらの解法を用いて具体的な計算ができる能力を養う.
[必要知識・準備]
基本的には,高校レベルの数学と線形代数の基礎知識があることが望ましい.
[評価方法・評価基準]
No評価項目割合評価の観点
1試験:定期試験 50  %中間試験以降の授業で説明した計算問題を変形したものを主に出題し,それらが解けるかどうかを確認する。 
2試験:中間試験 50  %授業で説明した計算問題を変形したものを主に出題し,それらが解けるかどうかを確認する。 
[教科書]
  1. 教科書は特に指定しない.
[参考書]
(未登録)
[講義項目]
1.概論<BR>2.線形計画法の基礎<BR>3.シンプレックス法 標準形,シンプレックス表の作成<BR>4.シンプレックス法 シンプレックス基準,C行C列の利用<BR>5.人為変数を用いた解法 罰金法<BR>6.人為変数を用いた解法 2段階法の基礎<BR>7.中間テスト<BR>8.人為変数を用いた解法 2段階法の応用<BR>9.主問題と双対問題 存在定理と双対定理,双対問題の定式化<BR>10.双対シンプレックス法<BR>11.双対シンプレックス法<BR>12.線形計画問題の経済的解釈 シャドープライス<BR>13.線形計画法の応用問題<BR>14.後期テスト<BR>15.予備:補習
[教育方法]
本講義は,ノート講義を通じて学生が講義中に実際に解法を学びながら具体的問題を解く手順を同時に学習できる方法を採用している.そのため,理解度の異なる学生に対応するために,講義中に個別に学生からの質問などに対する説明を加える時間をとっている.
[JABEEプログラムの学習・教育目標との対応]
教育目標(C)社会基盤の設計・施工や環境保全技術を習得するための基盤として、構造力学、土木材料学、地盤工学、計画学、水理学及び環境工学などの専門基礎学力を身に付ける。(専門基礎学力の付与)<BR>教育目標(E)専門基礎に関する演習科目において、自発的・継続的に学習する能力を身に付けるとともに、社会的要請や社会環境の変化に柔軟に対応し問題を解決する能力を獲得する。(学習および問題解決能力)
[その他]
(未登録)